3.2.9 \(\int \frac {x (a+b \log (c x^n))^2}{(d+e x)^3} \, dx\) [109]

3.2.9.1 Optimal result
3.2.9.2 Mathematica [A] (verified)
3.2.9.3 Rubi [A] (verified)
3.2.9.4 Maple [C] (warning: unable to verify)
3.2.9.5 Fricas [F]
3.2.9.6 Sympy [F]
3.2.9.7 Maxima [F]
3.2.9.8 Giac [F]
3.2.9.9 Mupad [F(-1)]

3.2.9.1 Optimal result

Integrand size = 21, antiderivative size = 112 \[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\frac {b n x \left (a+b \log \left (c x^n\right )\right )}{d e (d+e x)}+\frac {x^2 \left (a+b \log \left (c x^n\right )\right )^2}{2 d (d+e x)^2}-\frac {b n \left (a+b n+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d e^2}-\frac {b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d e^2} \]

output
b*n*x*(a+b*ln(c*x^n))/d/e/(e*x+d)+1/2*x^2*(a+b*ln(c*x^n))^2/d/(e*x+d)^2-b* 
n*(a+b*n+b*ln(c*x^n))*ln(1+e*x/d)/d/e^2-b^2*n^2*polylog(2,-e*x/d)/d/e^2
 
3.2.9.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.38 \[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\frac {-\frac {2 b n \left (a+b \log \left (c x^n\right )\right )}{d+e x}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{d}+\frac {d \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2}-\frac {2 \left (a+b \log \left (c x^n\right )\right )^2}{d+e x}+\frac {2 b^2 n^2 (\log (x)-\log (d+e x))}{d}-\frac {2 b n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{d}-\frac {2 b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d}}{2 e^2} \]

input
Integrate[(x*(a + b*Log[c*x^n])^2)/(d + e*x)^3,x]
 
output
((-2*b*n*(a + b*Log[c*x^n]))/(d + e*x) + (a + b*Log[c*x^n])^2/d + (d*(a + 
b*Log[c*x^n])^2)/(d + e*x)^2 - (2*(a + b*Log[c*x^n])^2)/(d + e*x) + (2*b^2 
*n^2*(Log[x] - Log[d + e*x]))/d - (2*b*n*(a + b*Log[c*x^n])*Log[1 + (e*x)/ 
d])/d - (2*b^2*n^2*PolyLog[2, -((e*x)/d)])/d)/(2*e^2)
 
3.2.9.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2781, 2784, 2754, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx\)

\(\Big \downarrow \) 2781

\(\displaystyle \frac {x^2 \left (a+b \log \left (c x^n\right )\right )^2}{2 d (d+e x)^2}-\frac {b n \int \frac {x \left (a+b \log \left (c x^n\right )\right )}{(d+e x)^2}dx}{d}\)

\(\Big \downarrow \) 2784

\(\displaystyle \frac {x^2 \left (a+b \log \left (c x^n\right )\right )^2}{2 d (d+e x)^2}-\frac {b n \left (\frac {\int \frac {a+b n+b \log \left (c x^n\right )}{d+e x}dx}{e}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e (d+e x)}\right )}{d}\)

\(\Big \downarrow \) 2754

\(\displaystyle \frac {x^2 \left (a+b \log \left (c x^n\right )\right )^2}{2 d (d+e x)^2}-\frac {b n \left (\frac {\frac {\log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )+b n\right )}{e}-\frac {b n \int \frac {\log \left (\frac {e x}{d}+1\right )}{x}dx}{e}}{e}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e (d+e x)}\right )}{d}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {x^2 \left (a+b \log \left (c x^n\right )\right )^2}{2 d (d+e x)^2}-\frac {b n \left (\frac {\frac {\log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )+b n\right )}{e}+\frac {b n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{e}}{e}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e (d+e x)}\right )}{d}\)

input
Int[(x*(a + b*Log[c*x^n])^2)/(d + e*x)^3,x]
 
output
(x^2*(a + b*Log[c*x^n])^2)/(2*d*(d + e*x)^2) - (b*n*(-((x*(a + b*Log[c*x^n 
]))/(e*(d + e*x))) + (((a + b*n + b*Log[c*x^n])*Log[1 + (e*x)/d])/e + (b*n 
*PolyLog[2, -((e*x)/d)])/e)/e))/d
 

3.2.9.3.1 Defintions of rubi rules used

rule 2754
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symb 
ol] :> Simp[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^p/e), x] - Simp[b*n*(p/e) 
  Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, 
b, c, d, e, n}, x] && IGtQ[p, 0]
 

rule 2781
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + 
(e_.)*(x_))^(q_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d + e*x)^(q + 1)*((a 
+ b*Log[c*x^n])^p/(d*f*(q + 1))), x] + Simp[b*n*(p/(d*(q + 1)))   Int[(f*x) 
^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, 
d, e, f, m, n, q}, x] && EqQ[m + q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1]
 

rule 2784
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_))^(q_.), x_Symbol] :> Simp[(f*x)^m*(d + e*x)^(q + 1)*((a + b*Log[c*x^n] 
)/(e*(q + 1))), x] - Simp[f/(e*(q + 1))   Int[(f*x)^(m - 1)*(d + e*x)^(q + 
1)*(a*m + b*n + b*m*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, 
x] && ILtQ[q, -1] && GtQ[m, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.2.9.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.52 (sec) , antiderivative size = 484, normalized size of antiderivative = 4.32

method result size
risch \(-\frac {b^{2} \ln \left (x^{n}\right )^{2}}{e^{2} \left (e x +d \right )}+\frac {b^{2} \ln \left (x^{n}\right )^{2} d}{2 e^{2} \left (e x +d \right )^{2}}-\frac {b^{2} n \ln \left (x^{n}\right )}{e^{2} \left (e x +d \right )}-\frac {b^{2} n \ln \left (x^{n}\right ) \ln \left (e x +d \right )}{e^{2} d}+\frac {b^{2} n \ln \left (x^{n}\right ) \ln \left (x \right )}{e^{2} d}-\frac {b^{2} n^{2} \ln \left (x \right )^{2}}{2 e^{2} d}-\frac {b^{2} n^{2} \ln \left (e x +d \right )}{e^{2} d}+\frac {b^{2} n^{2} \ln \left (x \right )}{e^{2} d}+\frac {b^{2} n^{2} \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{e^{2} d}+\frac {b^{2} n^{2} \operatorname {dilog}\left (-\frac {e x}{d}\right )}{e^{2} d}+\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right ) b \left (-\frac {\ln \left (x^{n}\right )}{e^{2} \left (e x +d \right )}+\frac {\ln \left (x^{n}\right ) d}{2 e^{2} \left (e x +d \right )^{2}}-\frac {n \left (\frac {\ln \left (e x +d \right )}{d}+\frac {1}{e x +d}-\frac {\ln \left (x \right )}{d}\right )}{2 e^{2}}\right )+\frac {{\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right )}^{2} \left (-\frac {1}{e^{2} \left (e x +d \right )}+\frac {d}{2 e^{2} \left (e x +d \right )^{2}}\right )}{4}\) \(484\)

input
int(x*(a+b*ln(c*x^n))^2/(e*x+d)^3,x,method=_RETURNVERBOSE)
 
output
-b^2*ln(x^n)^2/e^2/(e*x+d)+1/2*b^2*ln(x^n)^2/e^2*d/(e*x+d)^2-b^2*n*ln(x^n) 
/e^2/(e*x+d)-b^2*n*ln(x^n)/e^2/d*ln(e*x+d)+b^2*n*ln(x^n)/e^2/d*ln(x)-1/2*b 
^2*n^2/e^2/d*ln(x)^2-b^2*n^2/e^2/d*ln(e*x+d)+b^2*n^2/e^2/d*ln(x)+b^2*n^2/e 
^2/d*ln(e*x+d)*ln(-e*x/d)+b^2*n^2/e^2/d*dilog(-e*x/d)+(-I*b*Pi*csgn(I*c)*c 
sgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^ 
n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a)*b*(-ln(x^n)/e^2/( 
e*x+d)+1/2*ln(x^n)/e^2*d/(e*x+d)^2-1/2*n/e^2*(1/d*ln(e*x+d)+1/(e*x+d)-1/d* 
ln(x)))+1/4*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)* 
csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+ 
2*b*ln(c)+2*a)^2*(-1/e^2/(e*x+d)+1/2/e^2*d/(e*x+d)^2)
 
3.2.9.5 Fricas [F]

\[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x*(a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="fricas")
 
output
integral((b^2*x*log(c*x^n)^2 + 2*a*b*x*log(c*x^n) + a^2*x)/(e^3*x^3 + 3*d* 
e^2*x^2 + 3*d^2*e*x + d^3), x)
 
3.2.9.6 Sympy [F]

\[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int \frac {x \left (a + b \log {\left (c x^{n} \right )}\right )^{2}}{\left (d + e x\right )^{3}}\, dx \]

input
integrate(x*(a+b*ln(c*x**n))**2/(e*x+d)**3,x)
 
output
Integral(x*(a + b*log(c*x**n))**2/(d + e*x)**3, x)
 
3.2.9.7 Maxima [F]

\[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x*(a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="maxima")
 
output
-a*b*n*(1/(e^3*x + d*e^2) + log(e*x + d)/(d*e^2) - log(x)/(d*e^2)) - 1/2*( 
(2*e*x + d)*log(x^n)^2/(e^4*x^2 + 2*d*e^3*x + d^2*e^2) - 2*integrate((e^2* 
x^2*log(c)^2 + (3*d*e*n*x + d^2*n + 2*(e^2*n + e^2*log(c))*x^2)*log(x^n))/ 
(e^5*x^4 + 3*d*e^4*x^3 + 3*d^2*e^3*x^2 + d^3*e^2*x), x))*b^2 - (2*e*x + d) 
*a*b*log(c*x^n)/(e^4*x^2 + 2*d*e^3*x + d^2*e^2) - 1/2*(2*e*x + d)*a^2/(e^4 
*x^2 + 2*d*e^3*x + d^2*e^2)
 
3.2.9.8 Giac [F]

\[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x*(a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)^2*x/(e*x + d)^3, x)
 
3.2.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int \frac {x\,{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{{\left (d+e\,x\right )}^3} \,d x \]

input
int((x*(a + b*log(c*x^n))^2)/(d + e*x)^3,x)
 
output
int((x*(a + b*log(c*x^n))^2)/(d + e*x)^3, x)